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A special case of the problem of two-leg pacing, namely that of standing on 
one fixed foot [l], is investigated. Dynamics of the torso are studied on the 
assumption that the leg support and attachment points are fixed in space. 

1, The e qu a t i ens of motion. We consider the motion of the 
torso standing on one leg in the stationary system of coordinates NXYZ (Fig. 1) in 

which N is the coordinate origin and the 2 -axis is directed vertically upward. We 
assume the torso to be a solid body of weight P = Mg (M is the mass of body and 
g the acceleration of gravity). Two mult,ilink legs consisting of weightless noniner- 

tial links connected by three-stage joints are attached to the body at point 0 . The 
body whose center of mass is at point C is supported on one of the legs. We denote 
by PC, ro, and r, the position vectors drawn from N to the body center of mass, the 

Z 

N 

X ii/l- 
Fig. 1 

attachement point 0 , and the support point, resp- 
ectively, and by p the position vector OC. Then 

rc = ro + p. We denote by P the gravity force 

vector and by R the resultant vector of the support 
reaction force which includes the normal component 
of reaction and the friction force, i. e. the adhesion. 

We introduce in the analysis the reference point 

ex, ey, ez of unit vectors along axes X, Y, and 

2 and e,, e2, e3 the reference point of unit 

vectors along axes Ox’y’z’ rigidly attached to the 

body, which we assume to coincide with the princi- 

pal axes of inertia of the body at point 0. The 

relative position of axes is determined by the mat- 
rix of directional cosines 

eX’ek = ukr eY’ek = ph., eZ’ek = yk (k = I, 2, 3) (1.1) 
The equations of motion of the system which represent the theorem on the change 

of its momentum and the theorem on its moment of momentum relative to point 0 

can be presented in the form [l] 

R = - P + M {ro” + Q’ x p + o x [to x p]} (1.2) 

Jw’+o x Jo+Mpxro”=p x P-(ro -TV) x R 

where o is the angular velocity vector of the body and J is the body inertia tensor 
at point 0. The symbol O’ denotes the dervative of angular velocity of the body 
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in fixed axes, so that 

r/I, 
- Jo’ k (0 Jw 
dl (1.3) 

where L is the moment of momentum vector. We assume that control moments 
u i are applied at each i -th of the leg joints. Owing to the noninertial properties of legs, 

the application of the theorem on the change of the moment of momentum relative 
to the i -th joint to the part of leg between the support point and the i-th joint 
yields 

11~ (ri - I’,) x: R 

where ri is the position vector of the i -th joint drawn from the origin N of the 
stationary coordinate system. 

The last term in the second of Eqs. (1.2), thus, represents the moment applied to 

the body. It depends on the reaction force R which may be considered as the control. 
In conformity with the statement of the problem this control ensures the immobility of 

the point of leg attachment. The point of support is also fixed. Hence 

Po =m,: const, r, 7 const (1.4) 
Generally ro = r. (t)’ is a given continuous function and rv = r, (t) a given 

piecewise continuous function. Equations (1.2) then define the process of the so-call- 

ed single-support step [I.]. 
On the strength of (1.4) we have in Eqs.(l. 2) ro” = 0. Taking this into acc- 

ount and using the first of Eqs. (1.2), we eliminate from the second the reaction R 
and obtain for the motion of the body the equation 

Jo’+oxJrl)=pxP+rxP-_rx{O’x~+oX[oXgl} (1.5) 

P ~~1 - Pez, r = xeeg + yey + zez 
I 

P = x0'el + YO e2 + z0'e3, 0 = ulel + 02e2 + 03e3 

J = diag {A, B, C} 

where r = r. - r,, is a vector constant in space whose introduction is tantamount 
to the transfer of the origin N of the stationary coordinate system to the support point, 
and 2, y, z, xo’, yo’,, and zo’ are constant quantities. The first term in the right- 

hand side of (1.5) is the moment of the force of gravity and the remaining terms rep- 
resent the control moment. It is apparent that the control moment depends not only 

on phase coordinates and velocities but, also, on accelerations. System (1.5) is closed 

by the Poisson kinematic equations 

ex’ = es ‘< 0, ey’ =z ey X 0, ez’ = eZ x 0 (LR 

Let us pass to theinvestigationof system (1.5), (1.6) whose particular case of 
r = 0 is the classical problem of dynamics of a heavy solid body. Hence it is 

reasonable also in the case of r # 0 to consider, first of all, the transformation used 

in well studied cases (e. g., integrable) of problems of heavy body motions. 
Below, we consider transformations in three classical problems, namely those of 

Euler, Lagrange, and of plane motion. 

2. Tran8formatlon in the case of Euler’8 problem 
[l]. Let the leg attachment point be at the body center of mass. Then p = 0 and 
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Eq. (1.5) with allowance for (1.3) is conveniently written in the form 

dLldt = r x P (2.N 
The control moment vector r X P applied to the body is constant and lies in the 

horizontal plane, which means that the moment of momentum L increases indefinit- 

ely. We call such motion “unlimited unwiding of the body”. For the components Lx, 
Ly, and Lz of vector L we have the following first integrals: 

Lx = - Pyt + C,, Ly = Pst -+- cz, Lz = c, 

where C1, C,, and C,I are constants of integration. The direction of vector L 
~ymptotica~y approaches the direction of the control moment acting in the horizontal 

plane. 
We recall that the considered system resting on one and the same point of the sur- 

face retains the foot immobility in any arbitrary position, and the system center of 
mass cannot at any time lie on the vertical line passing through the support point. The 

system supported on the surface on a single point of the foot does not fall, although 
standing obliquely. This is achieved owing to the infinite increase of the moment of 
momentum. (Thus a man standing on his heels tries to maintain equilibrium by rotat- 
ing his arms). Although this case had been already described in Cl]. it is presented 

here for the sake of making subsequent exposition understandable. 

As implied by (2, l), infinite unwind~g of the system does not occur only when 
r \I P and, then, problem (2.1) degenerates to the classical case of Euler’s problem. 

infinite unwinding of the body can also occur when fl # 0, since then the 

constant (in space) vector F X P additionally appears in the moment applied to the 

body. 
It is interesting to note that bounded motions of the body also exist. This will be 

shown below. 

9. Trrnliformatfon fn the c&&e of the Lagran~s 
p I o b 1 e m. We impose on parameters in (1.5) the following conditions: 

r = hZ, A = B, p = pe, (3.9 
the first of which means that the point of leg attachment is located exactly over the 

support point (r = y = 0, 2 = h). The last two conditions in (3. lf are Lagrange 

conditions. the body is dynamically symmetric (A I- B) and the center of masslies 
on the axis (x0’ = yo’ = 0, zoI = p) of dynamic symmetry. 

Let us consider the problem of the first integrals of Eqs. (1.5) and (1.6) under con- 

ditions (3.1). Since P = -_Pez and r = hez, the resultant moment vector in 

the right-hand side of (1.5) of the normal to ez , which by virtue of (1.3) (and when 

A # B # C) leads to the integral 
Lz = K1 (3.2) 

which in the case of A = B is of the form 

A (W,YI + ~2~2) -t- CCJW, = KI (3.3) 
We substitute now expressions (3.1) and (3.2) into (1.5) and carry out scalar multi- 

plication of both of its sides by es. Taking into account formula a X [b X 01 = 

b (ao) - c (‘b), after transformation we obtain 
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co; = Mph {tez~‘) - t~‘e,)(eze,) - (e30) ([Ed x WT es)) (3.4) 
Taking into account the third of Eqs. (I. 6), we can verify that the expression within 
braces represents the total derivative of the expression 

fez4 - he31 t-3) = wl + ~202 

Hence integration of (3.4) yields the new first integral 

co, - Mph (~1~1 + ~2~2) = & (3.5) 

which for h = 0 becomes the Lagrange integral. 

J.n the investigation the following relation between integrals (3.3) and (3.5) may 
also prove useful: 

(ai - ~~~h)(y~~~ + yso,) + Cw,(ay, + b) = aKf 4 b& (3.6) 

where a and b are arbitrary constants. When aA = b&f@, we obtain from (3.6) 

the integral 

GA + M&s) = G (3.7) 

If in (3,6) Ca - aA - bibfph, that integral assumes the form 

Mph (aez) + (A - C) 03 = C2 (398) 

Integral (3.8) is necessary for deriving the energy integral which also exists in this 

case. Let us prove this. 
Carrying out the usual procedure for obtaining the energy integral and taking into 

account conditions (1.6) and (3. l), we find that 

-&& (do) = - Pp -& (tw;z) - Mph (e@z) t $ + 

Mph (e30) (eza.~‘) + fifpho2 ([co x ezl e3) 

(3.9) 

But by virtue of (3,l) and (3.8) 

+ --$- (do) = f A $ 09 + (C - A) (e,o) (e,o’)= 

-!j- A -$ ~9 + Mph (ez&) (e#) 

(3.10) 

Substituting (3. IO) into (3.9) and taking into account (1.6), we reduce (3.9) to the 
form 

+-$Aw2+ Pp $ (wz) + huh (%ez> -& $- + (3.11) 

Mphd (es $, = 0 

where in conformity with (1.1) (e3ez) = ya, e,dez I’ dt = dy, / dt. ’ ~lation(3.11) 

is made integrable by multiplying it by the integrating factor A + Mphy,. After 
integration we obtain the following first integral 
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where E is the constant of integration. Integral (3.12) is a transform of the energy 

integral in the case of the Lagrange problem. This can be readily verified by passing 
in (3.12) (with allowance for (3.5) ) to limit h --f 0. 

It is interesting that (3.12) and (3.7) yield, as a corollary, a first integral that 

contains only angular velocity components 

(co2 + gF,-I) / os2 = E / cl2 

We have, thus, obtained three independent first integrals, 
(3.12) which together with the fourth (trivial) integral 

Y12 + VsS + yss = 1 

enable us to reduce the problem to quadratures, namely 

viz. (3.3), (3.5), and 

(3.13) 

(-g)” = (1 - Y32) { 
C2E - (MphK1 + AKa)2 

ca (A + J.fphys)a 

Hence 

dV, 
dt= 

+ VP, (VS) 
- A + MPhY, 

(3.14) 

where Pl(y3) is a fourth power polynomial of the indicated argument, The inversion 

Ys (r) makes possible the calculation in the usual manner of Euler’s angles which 

define the position of the body. 
Without going into the quantitative definition of the motion, we shall consider its 

qualitative properties. For this we investigate the roots of polynomial 

p4(y3) = (1 _ y32) {E _ (*p”“‘&+ AK2)a _ 

+ (A + W-&Y} - WI - y2K2j2 

It is evident that 

p, (Ys) - M2p2hg y: as ys 3 00 

p, (YS = f 1) = - (K, f IQ2 < 0 

Thus, when ph # 0 the polynomial P4 (y3) has in the interval ya S (-1, 1) 

two roots which we denote by u1 and u2, and assume that u1 < ut . 
Let us first assume that the sign of the denominator in formula (3.14) does not 

change in the admissible variation interval Va E [ui, usI. As in [a], we consider 

the qualitative properties of motion of the end of the &‘-axis over an imaginary 

unit sphere rigidly attached to the system of axes OXYZ. The Oz’ -axis oscillates 

in the spherical layer defined by ui and us (Fig. 2). 
To determine the relative position of systems OXYZ and Ox’y’z’ we introduce 

Euler’s angles$,Q, ‘p [2]. 

0i = $’ sin I3 sin 

y1 = sin 0 sin rp, 

From which 

Then 

cp + 8’ con cp, 02 = *’ sin 0 Cos rp -- 8’ sin cp 

y2 = sin 8 cos cp, yS = cos 0 
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YlOl +- Y2@2 = 4)’ (1 - Y3 “) 

Using formulas (3.3) and (3.5) we finally obtain 

We denote by X and W the angles formed by the meridional arc z’z with arc 
2X and the tangent to the trajectory of point z’ respectively. Then 

Hence the trajectory of point z’ has a monotonic character (Fig. 2, a), provided 

function (Kr - Kay,) does not change its sign for Ys e [ur, ua]. In the opposite 
case the trajectory is loop-shaped (Fig. 2, b). Finally, when (K, - K,Y,) 
vanishes at the ends y3 = ur or y+ = us of the segment, the trajectory has cusps ._ 
(Fig. 2, c). 

b C 

Fig. 2 

Let now A f Mphu’ = 0 where 

U’ S (U1, U2). The qualitative pattern 
of motion of the Oz’ -axis end over the 

unit sphere remains unchanged, since the 
form of formula (3.15) does not change. 

However, in conformity with (3.14), the 
angular velocity dy, / dt (and, generally, 
also the angular velocity of Euler’s angles) 
attain infinitely large values when crossing 
the parallel ya = u'. At the instant of 

crossing an effect similar to a shock produc- 
ed by the support is observed. A particular 
case of this effect is considered below in the 
investigation of the plane problem. 

4. Stability of vertical rotation. Equations(1.5)and(l.6) 
with con&ions (3.1) have a particular solution that corresponds to rotation of the body 
at constant angular velocity about the vertically oriented dynamic symmetry axis 

73 = 1, y1 = yz = 0, or = 02 = 0, CO3 = r’o (4.1) 
Let us analyze the stability of (4.1). The perturbed motion 

WI = p, a2 = q, o3 = r. -I- E; YI = Y, y2 = y’, y3 = 1 + 6 (4.2) 
has the following first integrals 

VI = 2A,2~& + 2MpA,g,6 + A,’ (p” + q2 + g”) + 
M2p2hg,,h2 + 4Mphr,Ao@ -k . . . 

(4.3) 

Vz = A,, (py -I- qy’) i- CE,S i- Cro6 
v, = y2 -j- y’2 + 62 + 26 = 0 
V, = A,Cc i- MphCEG f MphCr,G 

A0 = A + Mph, go = g + hro2 (4.4) 
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Integrals V, and I’, are obtained from formulas (3.12) and (3.14). Integrals 
Vs and V, are, respectively the rests of integrals (3.3) and (3.5), and the 

corollary of formula (3.7). Only terms of the order of smallness not higher than the 
second are retained, since higher order terms are unimportant forstability investigation, 

We use the method of Chetaev [3] for determining the Liapunov function of the 
form of a quadratic sheef of integrals (4.3) 

Setting 
L = V, $ 2xV, + CZV, + gV, f kVp2 + mV,6 

fi = _+,, a = MphAoro2 - MpAogO - x6-0 

k = (C2 -- Ao2)/ (AoPt?) 

2m = - M2p2hg - 2 Mphro2 (I+ T) 

(4.5) 

(4.6) 

we reduce (4.5) to the form 

L = A 02P2 + 2xA opy + [- MpA ,g - xCr,J y2 -I- 
A,2q2 + 2xAoqy + [-- MpAog - x Cr,J f2 -i- 
cy t 2x’C@ + I- MpAog - x’Cr,$j2 

x’ = x + Mphr,C I Ao 

(4.7) 

(4.8) 

Since according to (4.5) and because of V, = 0 

dL mVdB=fj 
df= ’ dt 

(4.9) 

the sufficient condition of stability of unperturbed motion (4.1) is that the quadratic 

form (4.7) must be positive definite. This condition is ensured by the suitable selec- 

tion of the, so far arbitrary, constant x. Actually each of the three quadratic forms 

which are additive in (4, ‘7) are positive definite for any x and X’ selected from the 

interval 
x1 < x < x2, x1 < x’ < xs (4.10) 

(4.11) 

The interval (4.10) actually exists when 

C2r, 2 > 4 MpA,g (4.12) 

and inequality (4.12) by virtue of (4.8) together with the additional condition 

JfphroC/A,cx2-xx, (4.13) 

whose explicit form is 

(1 - M2p2h2 / A ,,2)C2r02 > 4MpA,g, A, = Mph + A (4.14) 

Obviously (4.12) holds when (4.14) is satisfied. Thus the single condition (4.14) 

is the sufficient condition of stability of the unperturbed motion (4.1). It is general- 

ization of the sufficient condition of the Lagrange top stability, and reduces to it at 
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the limit h = 0. 

5. The plane problem case. The preceding analysis had disclos- 
ed a considerable variety of motions defined by Eq. (1.5), including the unlimited 

unwinding of the body and, also, bounded motions, Owing to the structure of Eq. 
(1.5) the coefficients at higher derivatives may pass through zero, and that generat- 
es shock phenomena, i.e. motions with unlimited angular velocity increase with limit- 
ed angles. Singlular motions, such as stationary and critical motions also exist. 

All this appears in the plane problem considered below. 
Setting 

y-yv=O,z-z,,=h, ~--%=a 

we obtain from (1.5) the system of plane motion 

1 J i- k,h cos 8 + k, CT sin 0J0” + 

kp (0’)’ [CT cos 0 - h sin 01 - k,g sin 8 - Mgo 

(5.1) 

(5.2) 

where k, = Mp and J is the moment of inertia (J = J, + Mp2, where J, 
is the central moment of inertia) at the attachment point. Angle (I is measured from 

the positive direction of axis 02 relative to OX to the body axis of symmetry 0s’ 

on which the body center of mass is assumed to lie. 

Formula (5.2) shows, first of all, the existence of equilibrium positions defined 

by the equality 
sin O0 = - o / p (5.3) 

when condition 

I O/PI < 1 (5.4) 

is satisfied, When it is not satisfied there is no equilibrium. 
Linearization of Eq. (5.2) around the equilibrium positions (5.3) enables us to 

ascertain that the “upper” equilibrium (cos 0, >0) is unstable, while the “lower” 
(cos 8, < 0) is stable when condition 

J, + M (p” - 02) > Mh f/p2 - ~2 (5.5) 
is satisfied and unstable in the opposite case. 

Using the conventional substitution 

0’ = p, 0’. = 1 d 
2 xP2 (5.6) 

we reduce Eq. (5.2) to a linear inhomogeneous first order equation in p2 with 8 

as the independent variable. That equation is integrable in quadratures. In this 

problem the quadratures are to be taken in explicit form. The result is of the form 

0’ = [c -220.58+x~+2eosin(0--a)ip-eccas(28-o)/2]’~~x (5.7) 
[I + e cos (0 - a)]-*, c = const 

9 = d0 /dr, z = ot, o = I/Mpg / J 

x=o(2/p+Mp/J), e- Mpl/h3+02/J 

sina=o/l/h2+oZ, cosa:-h/l/h2+02 

this enables us to construct the pattern of motion in the plane 8, 8’ in terms of 
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four parameteP: x, e, u / p, and CC. 

Fig. 3 

a 

Fig. 4 

The effect of parameter e is substantial. As implied by (5.7), the denominator 

in the right-hand side of (5.7) may pass through zero when e > 1, which implies an 

infinitely high angular velocity for finite values of the angle. We shall refer here to 

this phenomenon as “shock”. The necessary and sufficient condition of absence of 

shockis e< 1. 
The above is illustrated in Fig. 3, where the phase pattern relates to the case of 

o = 0. When e < i the pattern is similar to that of the simple pendulum with the 

stable stationary point 60 = n and unstable 9 = 0 (Fig. 3, a). 
As e _* 1 , the oscillating motion region stretches more and more along the 6’ 

-axis and, finally,for e = 1 becomes discontinuous: oscillating motions vanish and shock 

motions appears(Fig. 3b),with the straight line f& tire representing the discontinuity surface. 

Then, for e > 1 the discontinuity surface 6 = F)* splits in two, each of which sat- 

isfies the condition cos 8, = --1 / e, and point 6, = n becomes the second unstable 

point (Fig. 3~). 
The described pattern corresponds to o = 0, i.e. when the leg attachment point 

is exactly above the support point. When c # 0 the pattern is complicated by 

the action of the constant moment and the presence of motion related to the infinite 
unwinding of the body. The phase patterns of that case appear in Fig. 4 with the con- 
dition of freedom from shock e < 1 satisfied. For definitenes we assume here that 

u > 0. As shown above, when u < p there exists the stationary solution (5.3) 

and, also, a region of oscillatory motions in the neighborhood of the stable stationary 
motion regions. Trajectories of the body infinite unwinding also exist. AS o - of 

the region of oscillatory motions contracts, and finally vanishes when o = p. Only 
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the trajectories of infinite unwinding remain. 

They only become distorted when (J > p . 
Unlike in the case of CT < P, stationary sol- 
utions and critical motions are absent when 
0>P. 

It is not difficult to visualise phase trajec- 
tory characterized by, the absence of station- 

e ary points and the presence of shock pheno- 
mena, also when 0 > p, e >, 1. When 0 

Fig. 5 and e are just slightly larger than p and 
unity, respectively, the phase trajectories 

shown in Fig.4, b break at the discontinuity surfaces EJ* = rr + a ( more exactly, 

when cos (e, - a) = -1 / e ), and approach infinity along the latter with respect 
to 8’ (see Fig. 5, where u = P, e = 1). 

Fig. 6 

The most complicated case occurs when conditions (5.4) of existence of station- 

ary points and of shock e z I are simultaneously satisfied. The size of the region 
of oscillatory motions depends on how far one of the two stationary points 8, E [n, 3n 
/ 21 lies from the discontinuity line: when the discontinuity line passes through the 

stationary point O,, there are no oscillatory motions. Thus the necessary and suffici- 
ent conditions of existence of a region of limited motions are conditions (5.4) together 

with condition O. # e*, where O* is determined by the equality 1 + e cos (O* - 

CC) = 0 and condition O* E [R, 3n / 21. Possible situations when 0 < u < p, and e = 1 
ace represented in Fig. 6, where [diagrams] a, b, and c, correspond, respectively, 

tothecasesof e,>e*, e,= e*, and eo<e*. 
& the case of p > u # 0, e > 1 the pattern is complicated by the presence of 

two discontinuity surfaces. The region of limited motions may lie to the left or right 
of these (the phase pattern can be obtained by studying Pig. 6) but not between them, 
since there the stability conditions (5.5) of stationary points are violated. In the 
latter case the phase pattern resembles that shown in Fig. 3, c. 

The problem considered here corresponds to the limit case of the problem of pac- 
ing (with the step length and speed approaching zero). Hence the investigated motion 
can be considered as a generating one for pacing motions. They are also interesting 
on their own as an analysis of “conditions of standing”. 
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